トリウム燃料に関する国際セミナー,2014年4月9日

Thorium Core Characteristics

Takanori Kitada

Osaka University,

Division of Sustainable Energy and Environmental Engineering

kitada@see.eng.osaka-u.ac.jp

Thorium Core Characteristics

Thorium-loaded core characteristics depends on

Core type LWR(BWR, PWR), FR, MSR, ... different neutron spectrum field

Fuel composition $(Th,U)O_2$, $(Th,Pu)O_2$, ...

different thermal/mechanical property

Strategy Open/closed cycle, Partial/Full core loading, ... different target (conversion, reprocessing(?), ...) Thorium-loaded core characteristics can be evaluated by

Material parameters

thermal/mechanical property thermal conductivity, density (of sintered fuel), O/M, porosity, ...

Cross section & Resonance integral

Cross section & Resonance integral

At low energy range (<0.1eV), σ_f : U235 \approx Pu239 \approx U233 σ_c : Pu239 > U235 > U233

Reproduction factor ($v\sigma_f/\sigma_a$)

U235 Reproduction Factor

Nuclear transmutation from Th232/U238

Longer half-life of 233 Pa \Rightarrow conversion ratio (depends on power) (n,g) reaction of 233 Pa/ 239 Np

Delayed neutron fraction : β

	β	V d
U233	0.0027	0.0074
U235	0.0064	0.0167
Pu239	0.0020	0.0065
Th232	0.0203	0.0527
U238	0.0148	0.0460

Smaller fraction of U233 Larger fraction of Th232

β_{eff} : Effective delayed neutron fraction, Neutron kinetics/dynamics

 $RI_{U238nf} = 1.2[b]$ $RI_{Th232nf} = 0.37[b]$

JAEA Nuclear Data Center

Uncertainty of Cross section

Cross Section (barns)

Comparison of Th232 (n,g) Xsec. (ENDF/B-VII.1, JEFF-3.2, JENDL-4.0)

- 1) ENDF/B-VII.1: TH-232(N,G)TH-233
- 2) JEFF-3.2: TH-232(N,G)TH-233
- 3) JENDL-4.0: TH-232(N,G)TH-233

Discrepancy is trivial.

Although,

Uncertainty (1 σ , JENDL-4.0) is

- 4% unresolved reso. reg.,
- 20% resolved reso. reg.,
 - 2% thermal energy range.
- ⇒ uncertainty in core property

Validation of Cross section

Analysis of Post Irradiation Experiment (PIE)

Analysis of Thorium replacement worth measured at critical experiment facility (at KUCA, 2011-2013 with Kyoto Univ., Tokai Univ., Osaka Univ.,)

Th-plate \rightarrow Al-plate causes the change in excess reactivity. (Thorium replacement worth)

H/U (Hydrogen/U235) is 50, 140 and 210, by changing the arrangement of fuel cell, to obtain different neutron spectrum field.

Analysis of Th-replacement worth measured at KUCA

Analysis : continuous energy MC in 3D as-built model. (MVP-2.0, JENDL-4.0, 1 billion histories)

Underestimation (5–10%) of Th-replacement worth for all cases \Rightarrow underestimation of Th-(n,g) Xsec. is expected. C/E is the smallest for the case of H/U=50.

Sensitivity Coefficient (SC) of Th-replacement worth

Energy range is separated so as to discuss the contribution to the underestimation by considering Xsec. uncertainty (JENDL-4.0).

Uncertainty of Th-replacement worth (from Th232 (n,g) Xsec. Uncertainty)

Energy breakdown of uncertainty of the worth

	energy range[eV]							
core H/U	1.00E-5~	1.47E−3~	5.42E−2~	5.32E-1~	2.26E+1~	4.31E+3~	4 - 4 - I	
	1.47E-3	5.42E-2	5.32E-1	2.26E+1	4.31E+3	1.00E+7	total	
210	0.012	0.021	0.086	0.033	0.059	0.014	0.108	
140	0.015	0.022	0.089	0.037	0.075	0.018	0.116	
50	0.021	0.024	0.065	0.042	0.087	0.024	0.106	

Dominant uncertainty comes from 0.05~0.5eV, and 23eV~4keV

This range is likely to be underestimated by considering the C/E tendency on H/U

Total uncertainty is more than 10%

Further experiment at different neutron spectrum field is desirable, to ascertain the detailed underestimation of Th-replacement worth.

Conclusions

- Th-loaded core characteristics have been evaluated for many types of reactors, depend on neutron spectrum field, fuel composition, strategy.
- Th-loaded core characteristics analysis results may have much more uncertainty than expected, although three major libraries show good agreement,

Further experimental results (PIE, Th-worth measurement@KUCA, ...) are desirable to enhance the accuracy of Thorium Xsec. for better consideration of Th-loaded core performance.

Thank you for your attention. Is there any questions?

Cross section & Resonance Integral

Pa233, Np239 (n,g) U238, Th232 (n,f) 101 105 JENDL-4.0 300 K (u1), U-238, MT= 18, (n,fission) JENDL-4.0 300 K, Th-232, MT= 18, (n,fission) JENDL-4.0 300 K, Pa-233, MT=102, (n, γ) JENDL-4.0 300 K, Np-239, MT=102, (n, γ) 100 104 10-1 10³ 10-2 Cross Section (barns) Cross Section (barns) 10² 10⁻³ 101 10-4 10-5 100 10-6 10-1 10-7 10-2 10⁻⁸ 10-3 10⁻⁹ 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 105 106 107 107 Energy (eV) Energy (eV) JAEA Nuclear Data Cent JAEA Nuclear Data Center $RI_{Pa233ng} = 835[b] RI_{Np239ng} = 932[b]$ $RI_{U238nf} = 1.2[b]$ $RI_{Th232nf} = 0.37[b]$

Resonance Integral : RI = $\int_{0.5eV}^{10MeV} \sigma(E) \frac{1}{E} dE$

Fission Yields

http://wwwndc.jaea.go.jp/cgi-bin/FPYfig 18

Correlations of Th232 (n,g) Xsec.

Uncertainty of the worth mainly comes from Th232 (n,g).